

NASA Space Communication and Navigation Program

Space and Earth Terminal Sizing for Future Mars Missions

Julian Breidenthal, Hua Xie, Chi-Wung Lau, and Bruce MacNeal 15th International Conference on Space Operations - SpaceOps 2018 -Marseille, France, 28 May 2018

© 2018 California Institute of Technology. Government sponsorship acknowledged.

Motivation for the Study

Future Missions to Mars

- The NASA Space Communication and Navigation (SCaN) program is investigating potential communications architectures to support future missions to Mars
 - Time horizon out to about 2040.
- Explore options for providing sufficient capacity
 - Earth-, Earth-orbiting, Mars-orbiting, Mars-landed assets
 - Radio and Optical
- Compare relative strengths and weaknesses
 - Estimate the size, weight, power (SWaP) and comparative cost

Drivers on Communications Capacity

- Forecasted need for dedicated relay orbiters at Mars starting around 2031, at Mars Areostationary altitude (17,000 km)
- A human spaceflight mission aligned with a 24-day Mars short-stay surface scenario
- A crewed Mission to Phobos
- A collection of Mars orbiters and landers that would rely on a mix of radio frequency and optical communication
- SCaN's planned RF ground asset capacity for 2016-2040
- Possibility of an Earth-based optical subnet with global coverage, and an Earth orbiter carrying a substantial optical telescope for communication purposes

Structure of the Study

- Architectural Tenets
 - 1. Meet trunk data rate goals
 - 2. Minimize user burden
 - 3. Observe constraints of spectrum and components
 - 4. Minimize total system cost
- Study conducted in two passes
 - Pass 1 to compare the feasibility of link types for maximum user needs
 - Pass 2 considering feasibility, reduce requirements to be affordable, especially Earth terminals

Communication Requirements

Topic	First-pass requirement	Second-pass requirement				
Trunk Link Topology	1: X forward, X/Ka return	Ka-band forward				
	2: X forward, X/Ka/optical	RF/optical return: X/Ka-				
	return	optical				
Trunk Link Data Rate	50/250 Mbps forward/return	30 Mbps forward				
	X-band unconstrained	50, 75, 125 Mbps return				
Proximity Link Topology	1: UHF/X forward/return	Ka-band forward and return				
	2: UHF Forward/Return	Optical forward and return				
	optical return					
	3: UHF/X/Optical					
	forward/ return					
Proximity Link Data Rate	50 Mbps forward/return	0.5, 10, 50, 100 Mbps				
	UHF unconstrained	forward and return				
Optical Earth Terminal Type	12-meter monolithic	8-meter optical/RF hybrid				
	8-meter monolithic					
	8-meter optical/RF hybrid					
	4-meter optical array					
Radio Earth Terminal Type	Deep Space Network 34m	Same				
	Beam Waveguide Antenna					
Mars Relay Location	Areostationary	Same				
Mars Surface Element	Equatorial spot region,	Same				
Location	lat/long limt for elevation >45					
	deg to Areostationary relay					

Estimated SWaP and Comparative Cost for RF Terminals

				Normalized	Normalized
	Volume I			Cost Units	Cost Units 1st
Terminal	*	Mass kg	Power W	Nth Unit **	Unit
X/X/Ka Areostat Trunk 50/75					
Mbps	57,012	66.4	1011	116.6	198.0
X/X/Ka Areostat Trunk 125 Mbps	57,015	71.8	1891	124.8	225.1
Ka Prox Areostat 100 Mbps	105	7.7	94	29.3	46.7
Ka Prox Areostat 50 Mbps	105	6.1	49	23.9	33.1
Ka Prox Areostat 10 Mbps	102	2.8	9.5	5.4	11.9
Ka Prox Areostat 0.5 Mbps	101	2.5	2.5	3.8	9.3
Ka Prox Surface 100 Mbps	31	6.9	94	26.8	41.9
Ka Prox Surface 50 Mbps	31	5.3	49	21.3	28.3
Ka Prox Surface 10 Mbps	28	2	9.5	2.9	7.2
Ka Prox Surface 0.5 Mbps	27	1.7	2.5	1.3	4.5

^{*} Deployed volume, launch volume may be less

^{**} Cost scaled by an arbitrary factor

Est. SWaP and Comparative Cost - Optical Terminals

		Prox Surface			Prox Areostationary				Trunk						
Transmit	1.2 mW	25 mW	0.2W	0.5 W	1.2 mW	25 mW	0.2W	0.5 W	2W	4W	16W	23W	3x15W		
Aperture	5	5	5	5	10	10	10	10	10	22	50	50	50	cm	
Volume															
Total	1.1	1.1	1.1	1.1	9.0	9.0	9.0	9.0	9.0	96	456	456	456		
Mass															
Total	4.3	4.3	4.3	4.4	11.2	11.2	11.2	11.3	11.6	37.7	142.6	142.6	142.6		
Power															
Total	26.5	26.6	27.2	28.3	26.5	26.6	27.2	28.3	33.6	40.7	186.5	256.5	476.5		
Cost				20					24	38	94	94	94	cost	Theory 1
				10					15	38	129	129	129		Theory 2
				4					8	38	313	313	313		Theory 3

Cost Scaling Laws:

Theory 1: Stahl et al⁴ 2004 D¹.7 OTA

Theory 2: 50% fixed + 50% Meinel et al⁵ 2004 D^2.7 Observatory Theory 3: 20% fixed + 80% Meinel et al⁵ 2004 D^2.7 Observatory

Observations 1

- Optical, Ka-band, and X-band are all feasible
 - However, for a purely radio system, the Areostationary terminals would be quite large when fully deployed (~57,000 L)
 - Launch configuration is unknown at this stage, but volume could be much less if antenna were to be folded
- The UHF data rate for proximity links can be adjusted from a rate achievable with familiar low gain orbiter UHF antennas (10 kbps) up to 360 kbps using very large antennas
 - Multiple simultaneous proximity links would need multi-beam phased arrays, and even then might be impractical from a size viewpoint
 - This was a driver to consider X-band, Ka-band, and optical for proximity links.

Observations 2

- X-band can close the proximity links at 50 Mbps
 - But the Areostationary terminal would require fine pointing, not the current practice of staring at the planet with a broad beam
 - The full X-band spectrum allocation would be needed to handle the required data rate for a single user
- Optical solutions provide substantial size advantages
 - Mixed advantages/disadvantages on mass and power
 - Optical could solve spectrum issues
 - Multiple heads could serve many users in less volume than RF

Observations 3

- In the first pass through the study, we found large costs associated with Earth terminals, both for radio and optical
 - Total system cost could be lowered substantially by increasing the size and cost of the spacecraft relay trunk link elements
- We noticed substantial effects of elevation assumptions in the RF Earth terminal analysis (see next page)

Impact of Elevation Assumptions on RF System Capacity

 Issue: Select from among multiple potential interpretations of link capability – implications for system cost and risk on the order of 2-3 dB

jpl.nasa.gov